8. Transmission Electron Microscopy TEM

Electron beam passes the sample. \rightarrow very thin sample

Excellent resolution. \rightarrow down to atomic scale

8. Transmission Electron Microscopy TEM

9. Scanning Electron Microscopy SEM

Emissionsstrom The sample (emission current Kathode Wehneltzylinder (in vacuum) is Anode Elektronenstrom-Sprayblende scanned by the dichte im Alignment Crossover 1. Kondensorlinse electron beam. Sprayblende The electrons emitted 2.Kondensorlinse from the sample are Sprayblende detected. Stigmator Ablenkspulen Objektiv - variable sample size Bildfeinverschiebung **Aperturblende** Strahlstrom - simple sample (probe current) detector sample preparation Probenstrom (specimen current) vakuum ← - limited resolution (~ 50 nm)

primary electrons (PE)

backscattered electrons (BSE)elastic scattering $E_{BSE} \approx E_{PE}$ secondary electrons (SE)inelastic scattering $E_{SE} < 50 \text{ eV}$ characteristic X-rayselement analysis (EDS)

9. SEM

 $E_{PE} \sim E_{BSE}$

PE beam diameter d ~ 0.005 nm

resolution — SE ~ 10 nm BSE > 50 nm

Reichweite R der PE und Austrittstiefen der verschiedenen Signale im REM

- R: Reichweite der PE
- T: Austrittstiefe der RE
- Auflösungsgrenze der RE \approx 1/2 R
- Auflösungsgrenze der Röntgenstrahlung ≈ Wechselwirkungsvolumen
- Auflösungsgrenze der sekundären Fluoreszenz >> Wechselwirkungsvolumen

9. SEM interaction volume

penetration depth (R) of PE and escape depth (T) of BSE

 $T \approx R / 2$

aluminum for various PE energies

Reichweite R, Wechselwirkungsvolumen und Austrittstiefe T in Al für E_{PE} von 1, 5, 10, 20 keV ----: Reichweite R der PE, ---: Austrittstiefe T der RE

9. SEM interaction volume

PE energy

- penetration depth
- interaction volume

Electron density of sample

- shape and
- depth of interaction volume

9. SEM interaction volume

 $R \sim E_{PE}$

 $T \approx R / 2$ (T \approx 1-2 µm) $t \approx 5x$ free path length of SE

metals: t \approx 5 nm isolators: t \approx 50 nm

9. SEM topography for BSE

$$\begin{split} & \mathsf{E}_{\mathsf{PE}} \approx \mathsf{E}_{\mathsf{BSE}} \mbox{ (typical 10-25 keV) shadow effect} \\ & \mathsf{BSE: straight flight path, weak deflection by electric field} \\ & \rightarrow \mbox{ bright surface towards detector} \\ & \rightarrow \mbox{ shadow at back side} \end{split}$$

Negative voltage on detector keeps SE away.

9. SEM topography for SE

 $E_{SE} < 50 \text{ eV}$

edge effect

SE: curved flight path, strong deflection by electric field The surface to volume ratio determines the SE intensity. \rightarrow bright edge

Positive voltage attracts SE towards detector.

9. SEM topography SE

SE signal depends on surface inclination.

9. BSE enhanced composition or topography contrast

composition

9. Composition contrast

 $\begin{array}{l} \text{interaction coefficient } \eta \\ \rightarrow \text{electron density} \end{array}$

9. SE versus BSE images

9. Summary EM

TEM images with highest magnification electron diffraction demanding sample preparation

SEM SE images (standard) BSE images - composition - topography EDS element analysis simple sample preparation (flexible in size and shape)