Diffraction and Electron Microscopy

Karl Krämer

Department of Chemistry and Biochemistry

University of Bern

Contents

- 1. A short history
- 2. Diffraction
- 3. Single crystal diffraction
- 4. Powder diffraction
- 5. Crystallographic data sources
- 6. Electromagnetic radiation
- 7. Energy dispersive X-ray spectrometry EDS
- 8. Transmission electron microscopy TEM
- 9. Scanning electron microscopy SEM

1. A short history

1895 W.C. Röntgen, discovery of X-rays

1901 Nobel prize for physics

1912 M. von Laue, diffraction experiments on crystals

1914 Nobel prize for physics

2. Diffraction

2. Diffraction

		interaction with	
i) wave	X-ray	electrons	XRD
	neutron	atomic nuclei	ND
		magnetic moments	
	electron	electrons	TEM

ii) grating crystalline material (sample)

iii) elastic scattering ($\Delta E = 0$)

iv) interference of scattered waves diffraction angle (2 θ) \rightarrow lattice parameters (unit cell) reflection intensity (I_{hkl}) \rightarrow atoms (element, site, etc.)

2. Bragg's law

interference of diffracted waves

 $\sin\theta = n \lambda / 2 d$ $n \lambda = 2 d \sin\theta$

 $\begin{array}{l} B^{\prime}\text{-}A_{1}=B\text{-}C\\ B\text{-}A_{1}=B\text{-}A_{3}\\ \text{phase shift (B-}A_{1})\text{-}(B^{\prime}\text{-}A_{1})=C\text{-}A_{3}=n\;\lambda \end{array}$

d = layer distance λ = wave length n = 1

3. Single crystal diffraction

diffraction pattern (here: (0kl) plane)

position of reflections \rightarrow lattice parameters (here: b, c, α)

intensity I_{hkl} \rightarrow atoms in unit cell

3. Single crystal diffraction

reflections with $I_{hkl}=0$ \rightarrow symmetry

extinction rules 0kl with k+l=2n (n glide plane \perp a)

0k0 with k=2n 00l with l=2n (2_1 screw axes) along b and c)

 \rightarrow space group (here: Pnma = P 2₁/n 2₁/m 2₁/a)

From single crystal to powder

3. From single crystal to powder

Information about crystal orientation is lost, i.e. the Miller index (hkl) of the reflection.

In powder \rightarrow only 2 θ data.

4. Powder diffraction

4. Powder diffraction

4. Powder diffraction

4. Diffraction (real space)

large d-values \rightarrow small 2 θ -angles sin $\theta \sim 1/d$

4. The problem of powder indexing

 $2\theta \rightarrow d \rightarrow a, b, c, \alpha, \beta, \gamma$ lattice parameters

 $d \rightarrow h, k, I$ Miller's Indices

The reverse is simple. Calculation of a theoretical pattern from crystal structure data $2\theta \leftarrow d \leftarrow a, b, c, \alpha, \beta, \gamma$ lattice parameters

 $\mathbf{I}_{hkl} \gets \text{intensity calculation from space group and} \\ atomic positions$

 \rightarrow Crystallography

4. The phase problem

$I_{hkl} = PLG \cdot H \cdot A \cdot T \cdot |F_{hkl}^{2}|$

- PLG polarisation, Lorentz, geometry factor
- H multiplicity (powder), for crystal H = 1
- A absorption factor
- T temperature factor, $T = e^{-(B \cdot \sin^2\theta / \lambda^2)}$
- F strukture factor

$$\mathsf{F}_{\mathsf{hkl}} = \Sigma_{\mathsf{i}} \mathsf{f}_{\mathsf{i}} \cdot \mathsf{e}^{2\pi \mathsf{i} (\mathsf{h} \cdot \mathsf{x}_{\mathsf{i}} + \mathsf{k} \cdot \mathsf{y}_{\mathsf{i}} + \mathsf{l} \cdot z_{\mathsf{i}})}$$

sum over all atoms i of the unit cell

- f_i atomic form factor (~ number of electrons)
- x,y,z atomic position

4. Powder versus single crystal diffraction

single crystal	determination of unknown (new) crystal structures
powder	analysis of phase and phase purity lattice parameter refinements
	crystal structure refinements of known structures (Rietveld method)
	structure solutions (very rarely)

Best data are obtained from

- powder for lattice parameters
- crystals for atomic parameters.

5. Crystallographic data

ICSD Inorganic crystal structure database (FIZ Karlsruhe)

CSD Cambridge structure database (organic compounds)

access via the web (license required) \rightarrow download a CIF file

(or use crystallographic data from literature)

crystallographic data

- i) space group
- ii) lattice parameters (positions of r
- iii) atomic positions

(positions of reflections 2θ) (intensity of reflections I_{hkl})

 \rightarrow calculation of theoretical pattern

5. Crystallographic data

PDF Powder Diffraction File from ICDD (license required) International Centre for diffraction data

Data base contains measured patterns (be careful about \rightarrow incomplete data (missing lines) \rightarrow low quality data)

and

calculated patterns (from no. 65-xxxx onwards).

6. Electromagnetic radiation

6. Electromagnetic radiation

 \rightarrow diffraction wave photon \rightarrow spectroscopy

 $E = h v = (h c) / \lambda$

$$E \sim v \sim 1/\lambda$$

$$\lambda v = c$$

 $h = 6,626 \cdot 10^{-34} Js$

 $c_0 = 2,998 \cdot 10^8 \text{ m/s}$

Planck's constant velocity of light in vacuum

- frequency ν λ
- wave length

 λ (Cu K_{α}) = 1.54 Å λ (Mo K_{α}) = 0.71 Å $1 \text{ Å} = 10^{-10} \text{ m}$

6.1. X-ray tube

6.1. X-rays from an X-ray tube

continuous spectrum (Bremsstrahlung) $\lambda_{min.} \rightarrow kinetic energy of electron, E_{max.} = U e$

6.2. Characteristic radiation

Moseley's law

$$E = A (Z - \sigma)^2 (1/n_1^2 - 1/n_2^2)$$

A constant Z atomic number (= nucleus charge) σ shielding constant n₁, n₂ quantum numbers

K-series	$\rightarrow n_1=1$
α	$\rightarrow \Delta n=1$

characteristic radiation

Kα E ~ (Z - 1)²

6.2. Absorption of Cu K α radiation

The K-line of element Z is strongly absorbed by element Z-2.

7. Element analysis by EDS in a SEM

Energy dispersive X-ray spectrometry (EDS)

The electron beam ionizes atoms in the sample (S). The atoms emit characteristic X-rays.

wave length (energy) \rightarrow element

intensity \rightarrow composition

7. Element analysis by EDS in a SEM

7. Element analysis by EDS in a SEM

Element Line	Weight %	Weight % Error	Atom %	Atom % Error
Cu K	59.60	+/- 0.45	61.89	+/- 0.47
Zn K	36.53	+/- 0.49	36.88	+/- 0.49
Pb L	3.87	+/- 0.48	1.23	+/- 0.15
Total	100.00		100.00	

wave length (energy) \rightarrow element

intensity

 \rightarrow composition